

Introduction to CUDA

Overview
● HW computational power
● Graphics API vs. CUDA
● CUDA glossary
● Memory model, HW implementation, execution
● Performance guidelines
● CUDA compiler
● C/C++ Language extensions
● Limitations & Advantages

Computational power
● FLOPS – # float operations per second

HW Intel Core 2
Extreme QX6850

IBM CELL/BE Nvidia GeForce
8800 GTS

Clock Speed (GHz) 3.00 3.20 1.2
Processors 4 8 96
Bits per register 128 128 32
32bit floats per
register

4 4 1

Parallel operations
per processor

1 1/2* 1/3*

Paralel 32bit floats 16 32/64* 96/288*
GFLOPS 48.0 102.4/204.8* 115.2/345.6**

● * perform a load, store, shuffle, channel or branch operation in parallel with a
computation.

● ** parallel MAD (a=b*c + d) and ADD (a=a+b)

● 8800 ULTRA 1.5 GHz 128 processors = 192.0 / 576.0** GFLOPS

Compute Unified Device Architecture

● HW & SW architecture
– No need of graphics API
– HW

● GeForce 8 series (G8x)
● Quadro FX 5600/4600

– SW
● CUDA Driver
● CUDA Runtime
● CUDA Libraries
● CUDA Compiler (nvcc) GPU

CPU

CUDA Libraries

CUDA Runtime

CUDA Driver

Application

Graphics API vs. CUDA
● Graphics API

– API
– Program

● External
● Language

– GLSL,Cg,HLSL
– C/C++ like

● Types (function-like)
– Geometry Shader
– Vertex Shader
– Fragment Shader

● CUDA
– API
– Program

● Internal
● Language

– C/C++ extension
● Types (program-like)

– Kernel

Graphics API vs. CUDA
● Graphics API

– Fragment shader
limited to outputting
32 floats at a pre-
specified location

– store data in textures
(packing long arrays
into 2D textures, extra
addressing math)

● CUDA
– scattered writes

(unlimited # of stores
to any address)

– load from any address
– shared fast memory

(currently 16KB per
multiprocessor)
accessible in parallel
by blocks of threads

CUDA glossary
● Thread

– Running computation on a single scalar processor
● Kernel

– Program running on device
● Thread Block

– 3D block of cooperative threads, that share fast
memory

● Grid of Thread Blocks
– 2D grid of Thread Blocks of same dimensionality

executing the same Kernel
– No communication between Thread Blocks !

Memory model
Grid
Block (0,0)

Texture memory

Global memory

Constant memory

Shared Memory

Thread (0,0)

Registers

Local
Memory

Thread (1,0)

Registers

Local
Memory

Block (1,0)

Shared Memory

Thread (0,0)

Registers

Local
Memory

Thread (1,0)

Registers

Local
Memory

HW implementation
● Device

– Set of Multiprocessors (GTS 12x, GTX 16x)
● Multiprocessor

– Set of (scalar) processors (8x)
– Shared memory (16 kB)
– SIMD architecture

● every processor executes the same instruction on
different data

– Processes one or more thread blocks
● Warp

– SIMD group of threads (32) from the same block

Execution
● Grid of thread blocks -> one or more thread

blocks on each multiprocessor
● One thread block on only one multiprocessor

– efective usage of shared memory
● Block split into SIMD groups of threads (warps)

– Equal number of threads (warp size) in each warp
● Each of the Block warps is executed by the

Multiprocessor in a SIMD fashion
● Thread sheduler periodically switches between

warps

Thread Sheduler Multiprocessor
Processor 1

Processor 2

Processor 3

Processor 4

Processor 5

Processor 6

Processor 7

Processor 8

Sh
ar
ed
 M
em
or
y

Execution model

Warp 2

Warp 2

Block 1

Block (0,0)
Warp 1

Warp 2

Thread Sheduler

Warp 2

Warp 2

Block 1

Block (0,1) Warp 1

Warp 2

Execution model
● 1 x Multiprocessor (8 processors)

– Thread Block = n-Threads (n <= 512)
● Warp = 32 threads

– 8 processors = 8 parallel threads
– 1 x SIMD = 4 clock cycles (4 x 8 processors = whole Warp)

● Next Warp(s)
– Next Thread Block(s)

● Only if enough registers & shared memory
● Other multiprocessors

– Concurently processes their Blocks from Grid

Memory access
● 16 banks of shared memory

– 32 bit words
● Bank conflict

– Access of the same bank in the same clock cycle by
threads from the same half-warp (16 threads)

– Thread A accesses address N*4
– Thread B accesses address (N+k*16)*4

0

64

63

127

128 192

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Banks

Memory
Address
in bytes

16320 16383

Performance guidelines
● Threads per block

– Multiple of 64
– 64 minimum + multiple blocks per multiprocessor
– 192-256 recomended
– Use shared memory, avoid bank conflicts

● Number of blocks
– 100+
– 1000 to scale for future devices
– 2+ per multiprocessor

● Avoid wasting shared memory per block / registers per
thread (8192 registers per multiprocessor)

CUDA Compiler
● C/C++ like source code

– 'device' specific code
– 'host' specific code

● NVCC compilation
– Separate 'device' and 'host' specific code
– Compile 'device' specific code to CUDA binary
– Merge CUDA binary with 'host' code
– Call standard C/C++ compiler and linker on the

merged code

C/C++ Language 'extensions'
● Function type qualifiers

– __device__ : device only
– __global__ : exec on device, call from host
– __host__ : exec on host, call from host

● Variable type qualifiers
– __device__ : on the device
– __constant__ : in constant memory
– __shared__ : in shared memory of a thread block

C/C++ Language 'extensions'
● Build-in Vector types - {(u)inttype,float}{1,2,3,4}
● Build-in Variables

– gridDim
● dim3 - dimesion of grid

– blockIdx
● uint3 – block index within the grid

– blockDim
● dim3 – dimesion of the block

– threadIdx
● uint3 – thread index within the block

Execution configuration
● Function declartation

– __global__ void Func(float parameter);
● Function execution

– Func<<< Dg, Db, Ns >>>(parameter);
– Dg : dimension and size of the grid

● Dg.x*Dg.y -# block launched
– Db : dimension and size of each block

● Db.x*Db.y*Db.z -# threads per block
– Ns : optional, # bytes of shared memory dynamicaly

allocated

Memory management
Runtime API

● device memory
– cudaMalloc(),cudaMallocPitch(),cudaFree()

● host memory
– pageable

● standard functions (malloc(),free(),...)
– page-locked

● cudaMallocHost(),cudaFreeHost()
● copying

– cudaMemcpy()
● cudaMemcpyKind

– cudaMemcpyHostToHost, cudaMemcpyHostToDevice,
cudaMemcpyDeviceToHost, cudaMemcpyDeviceToDevice

CUDA Libraries
● CUFFT

– Fast fourier transform
● 1D,2D,3D
● Real -> Complex,Complex->Complex,Complex->Real

– Emulation
● CUBLAS

– Basic linear algebra subroutines
● scalar,vector,matrix

– Emulation

Current limitations
● SW limits

– No streaming support
● Memory copying is synchronous

● G8x
– Double to float conversion
– Only 24 bit integer multiply HW support

● 32bit integer mul is compiled into multiple instructions

● GPU & CPU can run in parallel
– CUDA 1.0 Kernel invocation is asynchronous

Advantages

Future
● HW

– Double precision
– Native 32-bit integer
– More multiprocessors

● SW
– CUDA 1.1

● part of the display drivers
● async execution
● double pecision support

References
● NVidia CUDA Programming guide 1.0

– http://developer.download.nvidia.com/compute/cuda/1_0/NVIDIA_CUDA_Programming_Guide_1.0.pdf

● NVidia CUDA 1.0 FAQ
– http://forums.nvidia.com/index.php?showtopic=36286

● Technical Brief NVIDIA GeForce 8800 GPU
Architecture Overview
– http://www.nvidia.com/object/IO_37100.html

● beta CUDA 1.1
– http://forums.nvidia.com/index.php?showtopic=51026

http://developer.download.nvidia.com/compute/cuda/1_0/NVIDIA_CUDA_Programming_Guide_1.0.pdf
http://forums.nvidia.com/index.php?showtopic=36286
http://www.nvidia.com/object/IO_37100.html
http://forums.nvidia.com/index.php?showtopic=51026

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

